Engineering fabric-covered buildings for true sustainability
September 11, 2017
SOARING OFF THE GRID
The Solar Ship hangar roof includes 200 polycrystalline photovoltaic (PV) modules that collect enough energy for the building to run entirely off-grid.
Founded in 2006, Solar Ship set out to build aircraft capable of travelling anywhere to provide service to areas without roads or infrastructure. When planes, trucks, and ships cannot deliver critical cargo for disaster relief or haul supplies to remote locations, this company’s solarship can be designed and built to the requirements of the mission.
The solarship is a hybrid aircraft that gains lift from a combination of buoyant gas and aerodynamics. Its design allows for extreme short takeoff and landing (XSTOL), and a large surface area on its top allows it to collect solar electric power (thereby expanding its range). It can also be powered by traditional combustion, but the primary goal is to refine a new mode of transportation not dependent on fossil fuels or runways.
This forward-thinking aerospace technology came together with another industry—that of building design and construction—when Solar Ship contracted to have a new aircraft hangar built at the Brantford Municipal Airport in Southwest Ontario. The 3771-m2 (40,597-sf) aircraft manufacturing and storage facility had to be larger than normal to accommodate the significant size of the hybrid airships—a need met with rigid-frame engineering utilizing structural steel I-beams in a tension-fabric building.
This rigid-frame design allowed SolarShip to achieve its specified goal of 3716 m2 (40,000 sf) of unobstructured interior space, rooftop panels, and a bifolding hangar door. The lightweight nature of the fabric also meant an existing concrete pad could be used as the foundation—a feature saving both money and construction time.
The minimum dimension for the main hangar door was 51 x 18 m (169 x 59 ft). Positioned on an end wall of the 53- x 70-m (176- x 231-ft) clear-span building, the biparting opening allows access for crafts fitting the current portfolio of the company’s solarships, which have wingspans up to 30 m (98 ft). The design also anticipates the development of a prototype with a 50-m (164-ft) wingspan. With a roof peak of 25 m (82 ft) and an 18-m (60-ft) eave clearance, the hangar provides ample vertical space for manoeuvering the aircraft through the assembly process.
The robust structure of the building is also consistent with environmental values. For instance, the hangar’s roof features an array of solar panels.
The dimensions of the Solar Ship facility were customized to provide space to maneuver new aircraft through the assembly process. The facility runs entirely off-grid.
Lewis Reford, partner at Solar Ship, says the design “incorporates a self-reliant photovoltaic power package that sits above the fabric roof, allowing our building operations to be entirely off-grid.”
The east- and west-facing sides of the roof each include 100 260-watt polycrystalline photovoltaic (PV) modules for a total 52-kilowatt array. Combiner boxes with full arc fault circuit interruption (AFCI) compliance are located between the array and the solar battery charge controllers. The arrangement also utilizes two energy storage systems.
Solar energy and a small generator supply power to the company’s onsite loads, including 24 high-bay, 300-watt light-emitting diode (LED) fixtures for nighttime work and electric operation to open and close the all-weather main hangar doors. Other loads requiring electricity include the energy storage systems, containerized office HVAC, fire system trace heating, small tool operations, video monitoring, electric vehicle (EV) charging, laptop and Wi-Fi power, and air blowers.
Based on estimated energy yield, which takes into account average insolation at the site and overall system efficiency, the solar assembly in place on the building will produce 62.4 megawatt hours of energy each year.
Facilitated by the strong load capacity of the rigid-steel framing and by the use of proven design principles, a series of I-beams runs parallel to the solar panels, reducing uplift beneath them and enhancing the structure’s stability. The pitch of the roof enables the PV panels to efficiently harvest solar energy, and is rated for 1.18 kPa rain-on-snow load and 0.42 kPa wind load.
Other aspects of the building also contribute to its sustainability profile. Mesh soffits and RV-3000 peak vents enhance passive ventilation, while the translucent polyethylene (PE) fabric cladding admits daylight to lower the facility’s reliance on artificial lighting.
In May 2016, the building was selected as the “Game Changer Project of the Year” by the Canadian Solar Industries Association (CanSIA). The award recognized the hangar for using a reliable and cost-effective system advancing the future of building-integrated distributed generation.
James Kumpula is in charge of business development, global operations, infrastructure implementation, and execution in his role as general manager of Legacy Building Solutions Canada. He works closely with staff in Canada and the United States to ensure projects are completed to clients’ demands. Over the course of more than 25 years, Kumpula has been responsible for more than $5 billion in projects, 3.5 million m2 (37.6 sf) of building installations, and staff of up to 1100. He is an innovative leader with a demonstrated ability to recruit, mentor, and motivate personnel to achieve corporate objectives while creating a cohesive team environment. Kumpula can be reached via e-mail at jkumpula@legacybuildingsolutions.com.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-advertisement
1 year
Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category .
cookielawinfo-checkbox-analytics
1 year
Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Analytics" category .
cookielawinfo-checkbox-functional
1 year
The cookie is set by the GDPR Cookie Consent plugin to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
1 year
Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Necessary" category .
cookielawinfo-checkbox-others
1 year
Set by the GDPR Cookie Consent plugin, this cookie is used to store the user consent for cookies in the category "Others".
cookielawinfo-checkbox-performance
1 year
Set by the GDPR Cookie Consent plugin, this cookie is used to store the user consent for cookies in the category "Performance".
JSESSIONID
session
The JSESSIONID cookie is used by New Relic to store a session identifier so that New Relic can monitor session counts for an application.
viewed_cookie_policy
1 year
The cookie is set by the GDPR Cookie Consent plugin to store whether or not the user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Cookie
Duration
Description
PHPSESSID
session
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
wordpress_test_cookie
session
This cookie is used to check if the cookies are enabled on the users' browser.
__cf_bm
30 minutes
This cookie, set by Cloudflare, is used to support Cloudflare Bot Management.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
CONSENT
2 years
YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data.
_ga
2 years
The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_gat
1 minute
This cookie is installed by Google Universal Analytics to restrain request rate and thus limit the collection of data on high traffic sites.
_gat_UA-
1 minute
A variation of the _gat cookie set by Google Analytics and Google Tag Manager to allow website owners to track visitor behaviour and measure site performance. The pattern element in the name contains the unique identity number of the account or website it relates to.
_gid
1 day
Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
ADV_u_id
3 months 8 days
Unique customer identifier used to track unique ad views and interactions with some ads.
IDE
1 year 24 days
Google DoubleClick IDE cookies are used to store information about how the user uses the website to present them with relevant ads and according to the user profile.
loc
never
AddThis sets this geolocation cookie to help understand the location of users who share the information.
OAGEO
session
OpenX sets this cookie to avoid the repeated display of the same ad.
OAID
1 year
Cookie set to record whether the user has opted out of the collection of information by the AdsWizz Service Cookies.
test_cookie
15 minutes
The test_cookie is set by doubleclick.net and is used to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE
5 months 27 days
A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface.
vuid
2 years
Vimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website.
YSC
session
YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages.
yt-remote-connected-devices
never
YouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt-remote-device-id
never
YouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt.innertube::nextId
never
This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requests
never
This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen.